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Abstract

In this work, we develope a numerical method to solve infinite time dif-

ferential games in closed-loop equilibria. Differential games are thought to

be run in dynamic decissions and competitive situations, such as market-

ing investments and pricing policies in a company. Closed-loop equilibria

allow us to obtain strategies as a function of ourselves and our competitor.

We apply our algorithm to a real data set of two competitive firms. We

show how our algorithm is able to develop a different price-advertising

strategy to get bigger benefits.

keywords: differential games; closed-loop equilibrium; time series

models; Lotka-Volterra models; Hamilton-Jacobi-Bellman equations; dy-

namic programming.

1 Introduction

In this work, we will focus on how much a company should invest - during a
fixed period - in television advertising and what should be the optimal price
of its goods or services under a competitive environment, assuming a unique
competitor, and in a dynamic context.

We are going to develop a rational methodology to optimize television ad-
vertising spending and the price of goods or services, taking into account that
the other competitor is also rational. So, in the same way as us, he will optimize
his spending and price, and it will be done with the aim of compete with us.

The existence of a time variable in this problem, for a given time period-
such as a fiscal year-, drives us to a dynamical system. This system will have
to capture the most relevant movements in sales, advertising, and price among
competitors.

We will answer the question of this work by using both Game Theory and
Optimal Control Theory. This approach is called “dynamic games”, concretely
“differential games”.
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According to [2] dynamic and differential games are based on “static games”
and “Optimal Control Theory”. Static games deal with decision process in which
several players have to take a strategy in non-cooperative or cooperative situa-
tions. There are different examples in academic literature, such as the prisoner
dilemma [2]. In this example, a static non-cooperative game, two thieves have
to decide if they confess or not their crime. They do not know what is the
decision of the other. But they know what they will win or lose if they confess
or not. Finally, it is straightforward to demonstrate that the equilibrium (or
final decision) is not the best for each player, but is not the worse. They try to
think what could be the decision of the contrary and then, they try to maximize
its decision. This kind of equilibrium will be discussed in the following pages,
and it is called a Nash Equilibrium [4].

The birth of Game theory is usually considered around 1944, when Von Neu-
mann and Morgensten published the book: ”Theory of Games and Economic
Behaviour”. But this kind of problems worried lots of years ago to economists
like Cournot or Stakelberg [2]. A game could be defined as a conjoint of well-
known rules by all the players which determine what actions can be done and
what are the pay-offs for taking a concrete action. The most interesting char-
acteristic of a game is that our actions depend on those of the players. So, in
order to define a strategy, all the players have to think of the other’s decisions.

Optimal control theory could be considered as a decision process under the
hypothesis that there is only one agent to take the decision. This decision is
based on a maximization (or minimization) of a temporal function (or dynamic
function) that reflects preferences, utility or benefit of the agent. If we relax the
restriction of one player in Optimal Control theory, we are now in the Dynamic
Games field.

The methodology we are going to explore to answer the main question is
a field of dynamic games called differential games. It consists on a game in
which each player has to optimize its benefits during a time interval, subject
to a dynamical system -that reflects market movements- in which the player
has to choose the different values of the control variables for all the exercise.
Controls are the only variables the players can modify, and it will be the key of
our problem. In this work we will explore a concrete kind of model solution, or
equilibrium, called

“closed-loop”1 [4],[8]. This solution has a clear interest in Marketing Sci-
ence because it allows the player to react if the competitor changes its behavior
surprisingly. We have worked in this kind of solution because, in general, mar-
keting literature in differential games often consider open-loop equilibrium, for
instance, [18]:

“Though the closed-loop differential game is more dynamic and realistic in
nature, the solution is much harder to find than the open-loop games because it
involves solving systems of partial differential equations [. . . ]. On the contrary,

1The other type of equilibrio is called “open-loop”. In the section 2 we will develop their
definition and properties.
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the open-loop games are much easier to solve because they only involve ordinary
differential equations. In most cases, researches have to restrict themselves to
open-loop games as a proxy to reality. Even with open-loop games, closed-form
solutions are hard to find when the number of state variables involved is large”.

In this practical case, we are going to use a (confidential) real data set from
a company in Spain. We deal with a product with one clear competitor (but in
other context of interest, for the sake of simplicity, all the competitors could be
reduced to only one). Our company invests with regularity on TV advertising. A
GRP, Gross Rating Point (GRP), is the so called TV advertising pressure unit.
Our competitor does not invest because it is a white label that only competes
with promotions and price. Our data base is compound by several variables
such as: the weekly sales, that represents the quantity of product units sold in
the current week; the weekly competitor sales, which is also the quantity sold
by our competitor in the current week; our GRPs and investment in euros per
week; and the weekly prices of the good for us and our competitor.

So, in our problem, since our competitor does not advertise on TV, we will
have to choose our advertising level and price, while our competitor only has to
choose the price level. Those variables form part of the dynamical system we
are going to develop in our work.

The main dynamic behavior is explained as follows: we have three levels of
variables. First of all are the control variables. In our case, control variables
are advertising spending and price. So, the value of those variables has to be
decided by the user, in our context, after solving an optimizing problem. The
second group of variables of the dynamical system is the state variables. State
variables represent how our clients react to our movements in control variables.
They can also affect each other in a bivariate sense, because it is reasonable to
think that an increase in our sales provokes a decrease in the competitor sales,
and vice-versa. Thirdly, the system needs to quantify our pay-offs2 . They are
measured with the benefit function. Benefit is a calculation that involves time,
our preferences for having the money as soon as possible, how much we gain
from our clients, and how much we spend in catching them.

Once we have defined our framework, we would remark that in our litera-
ture revision, we feel that closed-loop equilibrium in differential games is not
as developed as open-loop equilibrium. The fact is the referred difficulty to
obtain analytical solutions. Thus, in this work we have developed a numerical
method, in line with dynamic programming literature, specific to solve mar-
keting problems between two competitors. Then, we will provide an extended
example with real data with the objective of being used in the decision making
in companies.So, we are also focused not only in the numerical aspects but also
in how to implement it.

In this work we will introduce two novel ideas:

1. Estimating state equations by using Lotka-Volterra models, versus the

2Game Theory needs to quantify pay-offs in order to have a criteria to choose among
alternatives.
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usual Lanchester models

2. Adapting dynamic programming algorithms to differential games in infi-
nite periods.

Then, in order to validate our methodology, we consider a numerical benchmark
example and compare the obtained results with those given by other methods
found in the literature, as in [6],[12],[16]. And we will use real data provided by
one important spanish company.

This work will be structured in 5 chapters. In the next chapter, the second
one, we will deal with the theoretical model, specifying some concepts of dy-
namic systems involved and game theory to understand the rest of the work.
The third chapter will be devoted to parameter estimation using statistical
technics. The fourth section will explain the algorithm developed to answer our
main question and its properties. We will show the obtained results in chapter
5, indicating the gain, in terms of benefit, by using our methodology. Finally,
chapter 6 concludes.

2 Theoretical Model

2.1 variables and objectives

This section deals with the explanation of the theoretical model. Firstly, we will
enounce the most important components of a differential game and the variables
involved in the analysis. Then, we will explain three possible dynamical systems
that could fit the data a priori. Finally, we will set the complete optimization
model in a differential game form.

We start by defining a simple deterministic differential game on a time in-
terval [t0, T ]. We will consider as in [4]:

1. A set of N players.

2. A vector u of controls with coordinates ui(t) ∈ Ui ⊆ R
mi for each player

i ∈ I = {1, ...N}, and a vector of state variablesx(t) ∈ X ⊆ R
n . Here, X

is called the state space and Ui is the set of admissible controls of player
i.

3. The state equations describing the dynamic of the system:

ẋ = f(x(t), u1(t), ..., uN (t), t); x(t0) = x0.

4. A payoff functional for player i, Ji(u(·); t0, x0) =
∫ T

t0
gi(x(t), u(t), t)dt +

S(x(T ), T, ), where function gi is player i´s instantaneous payoff and func-
tion S is a terminal payoff.

In Table (1) , we list the notations and the variables we are going to use in the
rest of the document3:

3Here we provide a short description. As the text advances, it is possible to understand
more about notation and parameters meaning.
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Table 1: list of variables

variable description

x1(t) sales (in units) to our clients

x2(t) sales(in units) to our competitor’s clients

v1(t) GRPs of our company at time t

Ci(vi) Cost function with vias argument

ci,1(t) set of estimated coefficients

associated with the advertising cost in our company

p1(t) price of our good or service at time t

p2(t) price of our competitor’s good or service at time t

ρ1 Coefficient that measures the impact of GRPs on sales of our company

̟1 Coefficient that measures the effect of our price on our demand

̟2 Coefficient that measures the effect of competitor´s price on its demand

α1 Our attraction coefficient. It quantifies the

new customers that buy our product

α2 Competitor attraction coefficient. It quantifies the

new customers that buy competitor’s product

β12 Switching parameter. It quatifies the sensibility of

customers of brand 1 (us) to switch to brand 2(competitor)

β21 Switching parameter. It quatifies the sensibility of

customers of brand 2(competitor) to switch to brand 1(us)

N1 Our potential market

N2 competitor’s potential market

TM N1 + N2

M Market Share of one of the companies

mi unitary production cost associated with good or service xi

xi sales in units of company i. It only will be used in one example

In order to model the possible dynamical system that could fit well our sales
and the competitor´s ones as dependent variables, we have refreshed the baseline
models applied in literature [8],[4],[5].[10],[11],[13],[14],[15] and[18]. Generally,
the most common model in theoretical research is the “Lanchester model of
combat “ applied to marketing. As it is pointed in [10] the model could be
re-written into marketing notions as:

Ṁ = ρ1v
1/2
1 (1 − M) − ρ2v

1/2
2 M, (1)

where M is the market share of one company, understanding Market share
as the sales percentage of the company over the total sales of sector, and 1-M
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is the competitor´s share. v1 and v2
4 are the current investments in advertising

and ρ1and ρ2 are two coefficients that measure the impact on market share of
advertising efforts5. This model has been developed to compete on market share
and it does not include prices as other control variables.

[10] introduces a similar model based on [15], but in one case adapted to a
theoretical framework where competitors decide the advertising levels and the
price competing on sales level (not in market shares). The model, for i=1,2, is
defined as follows:

ẋi = ρivi(t)(TM − xi(t) − xj(t))
1/2Di(pi(t)) (2)

Being ρi a coefficient to measure the impact of advertising, denoted by vi(t) ,
on sales increase ẋi. TM is the market size for all the competitors, and Di(pi(t))
is a demand function that could be specified as a linear or non linear term.

This model could be a good candidate to fit our data. The problem, at
first sight, is that we should have a good estimation of TM . Furthermore, this
model, being completely multiplicative, does not contemplate the possibility of
one variable (for instance vi(t)) having a zero value for all the exercise (as it
occurs in the problem considered during this work).

Taking these issues into consideration, we have decided to study another
common model in applied research to analyze competitive situations. It is the
so-called Lotka-volterra (LV) applied to marketing. We suggest some references
such as [11] and [13] applied in telecommunications markets and in the internet
market, respectively, with the aim to define strategic behavior. In a general
sense, a LV model is used to manage population dynamics, as it is set in Equa-
tions (3), and (4):

ẋ1 =

[

α1

(

1 −
α1x1

N1

)

− β12x2

]

x1 (3)

ẋ2 =

[

α2

(

1 −
α2x2

N2

)

− β21x1

]

x2 (4)

In Biology literature, it is usual to consider x1and x2as different species
of predators and preys. Understanding Marketing environment as a derivative
of a problem of population dynamics, we can define, for instance, the sales of
each product given by x1 and x2. In this context, where β1 and β2 appear
as negative coefficients6 in Equation (3) and Equation (4) the two variables

4We have included in this only case this variable, because is required by original model
notation.

5the increase experimented by market share Ṁ is proportional to ρ1 (and is nonlinear since
it depends on the level of M at this time point).

6Could have any sense the increase in competitor sales causing an increase in our sales,
for instance β1 or β2 have possitive coefficients? Perhaps this could be due to any exoge-
nous factor that affects two variables to have a common trend, such as fashion or consumer
propension.This factor should be isolated.
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could be considered in populations dynamics as predators (and, of course, one
is the prey of the other). In marketing context both variables will be called as
duopolistic competitives. The way a “predator eats” in our model is nonlinear.
For instance, the more the preys are in the market, the more the preys ‘’eat’’ the
predator. This is the key of the multiplicative functional terms between x1and
x2 preceded by β1 and β2. Also, LV has a nonlinear (logistic concretely) growth

director term: α1

[

1 − α1x1

N1

]

, with a market size, N1, that reflects a natural

growth with stronger increases in the begining and lower increases as far as we
reach the N1value.

When a LV model is applied with control purposes, in literature [17] it is
common to include new variables (the controls) in a similar scheme than the
latter model. In this context, we have decided to include the control variables
in the traditional structure of LV models, preserving the non-linear relationship
among state variables and control variables. In the following, this model will be
referred as LV-1 :

LV-1

ẋ1 =
[

α1

[

1 − α1x1

N1

]

− β12x2 + ρ1v1 − ̟1p1

]

x1

ẋ2 =
[

α2

[

1 − α2x2

N2

]

− β21x1 − ̟2p2

]

x2

This will be our baseline model. But, in order to discuss if there exist similar
models appropriated to our problem, we will study two other models. In the
one hand, we will allow this functional form to catch quadratic effects on the
prices and advertising7:

LV-2

ẋ1 =
[

α1

[

1 − α1x1

N1

]

− β12x2 + ρ1v1 − ρ11v
2
1 − ̟1p1 + ̟11p

2
1

]

x1

ẋ2 =
[

α2

[

1 − α2x2

N2

]

− β21x1 − ̟2p2 + ̟22p
2
2

]

x2

A quadratic effect in this model represents the possibility of reach a point
where an increase/decrease of the variable value has no more effect on sales.
That uses to be called as saturation effect.Under this hypothesis, we will contrast
in the next chapter if there are saturation effects in advertising and in price.
The last model, proposed by [5] is an empirical Lotka Volterra model, based on
a linear approximation, using Vectorial Autoregressive with exogenous variables
models (VARX) imported from Econometric Theory. A VARX [7] is a stochastic
system similar to previous model, but where the relationship among variables
is linear and discrete:

VARX

7Under the hypothesis agents do not react to increases in price and advertising in the same
way independent on the size of the increase.
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x1(t + 1) = α01 + α1x1(t)− β12x2(t) + ρ1v1(t + 1)−̟1p1(t + 1) + ε1(t + 1)
x2(t + 1) = α02 + α2x2(t) − β21x1(t) − ̟1p2(t + 1) + ε2(t + 1)

Where

[

ε1(t + 1)
ε2(t + 1)

]

is a white noise vector with the following distribution:

N

[[

0
0

]

,

[

var(ε1(t + 1)) cov(ε1(t + 1), ε2(t + 1))
cov(ε1(t + 1), ε2(t + 1)) var(ε2(t + 1))

]]

.

In the following, in order to advance in the explaining of our methodology
framework, we will simplify the dynamical system notation8 as:

ẋ1 = g1 (x1, x2, v1, p1)
ẋ2 = g2 (x1, x2, p2)

Leaving for the next section the correspondent discussion about what is the
most adequate model to represent the system dynamics.

Each firm chooses its advertising and price level to maximize its discounted
infinite-horizon profit, given by [10]:

J1 =

∫ ∞

0

e−r1t ((p1 − m) x1(t) − C(v1(t))) dt (5)

J2 =

∫ ∞

0

e−r2t ((p2 − m) x2(t)) dt (6)

ẋ1 = g1 (x1, x2, v1, p1) (7)

ẋ2 = g2 (x1, x2, p2) (8)

Player 1 has as control variables price and advertising (p1and v1 in Equation
(5)). He has to decide, for all the time periods, the policy values of p1, v1 that
will affect the sales as state variable (x1in Equation (7)). But its sales will
be affected also by the sales of player 2 (x2 in Equation (7)). Every period,
player 1 will receive a payoff that is registered in the benefit function (J1 in
Equation (5)). In the meanwhile, player 2 only can choose a pricing policy p2,
(in Equation (8)). This price will affect its sales x2, as a state variable, which
also will be affected by player 1 sales (x1in Equation (8)). Finally, Player 2’s
payoffs will be computed in the benefit function (J2in Equation (6)).

As explained previously, in this work we will focus in obtaining closed-loop
strategies. If we allow the control function to be dependent on time and state
variables (i.e., u(x(t); t)), as done here, we talk about a Markovian strategy, or
also known as closed-loop strategy or feedback . Whereas in the case of a solely
time-dependent control( i.e., u(t)) we consider an open-loop strategy. Next,
following [4], we will introduce some concepts that we will use in the rest of this
work.

8up to this moment, we don´t know what of the three systems is more adequate.
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2.2 Nash equilibrium and Markov-Nash equilibrium, time

consistency and subgame perfectness

As introduced in the first chapter, a Nash equilibrium is a solution of a game
involving two or more players, in which each player is assumed to know the
equilibrium strategies of the other players, and no player has anything to gain
by changing only his own strategy unilaterally.

The solutions we are going to obtain in our framework can be included into
the concept of Nash equilibrium, as we will see in this section. In a differential
game if all opponents of player i use the so-called markovian strategies uj(t) =
θj (x(t), t)) , j 6= i where θ denotes a strategy, then player i faces a control
problem of the form discussed previously. If we slightly modify our notation,
the payer i’s decision problem could be rewritten as:

max J i
θ−i

(

ui (·)
)

=

∫ T

o

e−ritF i
θ−i

(

x(t), ui(t), t
)

dt (9)

st:
ẋ(t) = f i

θ−i

(

x(t), ui(t), t
)

(10)

x(0) = x0 (11)

ui(t) ∈ U i
θ−i (x (t) , t) (12)

where:

F i
φ−i

(

x(t), ui(t), t
)

= F i(x, θ1(x, t), ...θN (x, t), t)

f i
φ−i

(

x(t), ui(t), t
)

= f i(x, θ1(x, t), ...θN (x, t), t)

U i
φ−i (x(t), t) = U i(x, θ1(x, t), ...θN (x, t), t)

Now it is possible to define a Markovian Nash equilibrium for the differential
game.

Definition 2.1 We call a Markovian Nash equilibrium as the N-tuple (θ1, θ2,
..., θN ) of functions θi : X × [0, T ] in R

m, if for each i∈{1,2,. . . N} an optimal
control path ui(·) of the problem described by (Equations 9-12) exists and is
given by the Markovian strategy uj(t) = θj (x(t), t)) , j 6= i.♣

This definition shows that finding a Markovian Nash equilibrium of an N-
player differential game is equivalent to find Markovian strategies for the solu-
tions of a system of N interdependent optimal control models.

In the discussion between open-loop solutions and closed-loop, [4] points out
that every open loop strategy is, by definition, also a degenerated Markovian
Strategy, which means that every open-loop equilibrium is also a Markovian
Nash equilibrium. Thus, the set of open-loop equilibria of a particular game is
a subset of the set of all Markovian Nash equilibria. In general, as said in this
previous article, it is a proper subset.
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However, some properties remarked in the literature of differential games,
could help us to characterize better the properties of each equilibrium. In the
following, we will study time consistency and subgame perfectness.

[4] also points that there is no reason to think that one of the equilibrium
is better than others. It depends on the specific situation one want to depict.
Nevertheless, it is adequate to study additional characteristics. To do so, we
modify the previous model (eq 9-12) as follows:

We define a subgame Φ(x, t) by replacing the objective function for player i
and the system dynamics by:

∫ T

t

e−ri(s−t)F i
(

x(s), ui(s), s
)

ds (13)

ẋ(s) = f i
θ−i

(

x(s), ui(s), s
)

(14)

x(t) = x (15)

Hence,Φ(x, t) is a differential game defined on the time interval [t, T ] with
initial condition x(t)=x. So, we can next define time consistence.

Definition 2.2 Time consistency is defined if, for each t ∈ [0, T 〉 the subgame
Φ(x, t) admits a Markovian Nash equilibrium

(

φ1, ..., φN
)

such that φi(y, s) =
θi(y, s) holds for all i ∈ [1, 2, ..., N ] and all (y, s) ∈ X × [t, T 〉 .♣

In [4], it is demonstrated that any Markovian Nash equilibrium of a differ-
ential game is time consistent. Time consistency could be seen as a minimal
requirement for the credibility of an equilibrium strategy. The idea is if player
i has incentive to deviate from his strategy during the time interval, then the
other players will not believe his announcement and will compute their own
strategies by taking into account the expected future deviation of player i that,
in general, will be different from the initial set.

As it is explained in [5] the closed-loop equilibrium we are looking for in this
work has the properties of time consistency and subgame perfectness.

Definition 2.3 Let a Markovian Nash equilibrium
(

φ1, ..., φN
)

be a Marko-
vian Nash equilibrium for the game Φ(x0, 0). We call the equilibrium subgame
perfect if, for each (x, t) ∈ X × [0, T ], the subgame Φ(x, t) admits a Marko-
vian Nash equilibrium

(

φ1, ..., φN
)

such that φi(y, s) = θi(y, s) holds for all
i ∈ [1, 2, ..., N ]and all (y, s) ∈ X × [t, T ]. A Markovian Equilibrium which is a
subgame perfect is also called a Markov perfect Nash equilibrium.♣

As pointed out in [5], in contrast to time consistence, subgame perfectness
not only requires that the restriction of a subgame to be a Markovian Nash
equilibrium, but all the subgames are in a Markovian Nash equilibrium. It
is possible to show[5] that open-loop equilibrium is not subgame pefect while
closed-loop is. The other main difference between this kind of equilibria is how
they describe the reality. As we have pointed, open-loop cannot observe how
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our competitors react to changes in the state of the game, but closed-loop can
do it.

Finally, a way of solving a feedback equilibrium or closed-loop needs to
specify a Hamilton Jacobi Bellman equation (HJB) [4],[8],[15]. In our case, this
implies to solve for each player a differential equation in partial derivatives as
follows:

riVi = max
tvi,pi

[((pi − mi) xi − C(vi)) + ∇Vi (gi(xi, xj , vi, pi)] (16)

where Vi is the value function (or objetive function) of player i i 6= j , and ri

is a time discount parameter of player i, as is defined in the literature. The way
we are going to obtain the optimal strategies per player is based on numerical
methods derived from Dynamic programming.

3 Parameter Estimation

In this section we will develop the parameter estimation of our problem. This
section is divided in two main parts. First, we will be devoted to estimate the
parameter values for each state equation.

3.1 Estimating State Equations

As we developed in Section 2, we will estimate three possible versions of these
dynamic systems. The first of them is a LV model with two exogenous inputs
(the control variables). The second version will allow a quadratic functional form
for control variables. And the third model version is a possible linearization of
the LV and is well-known in Econometric Literature [7] as a VARX model.

Due to our data is of discrete nature, we will set h=1 in the discretization

scheme. So, we approximate ẋ ≈ x(t+1)−x(t)
h . Thus, according to [5] we will

consider this operation when it is necessary: x̃(t + 1) = x(t+1)−x(t)
x(t) .

In the following, we present the different funtional forms we are going to
estimate, LV1,LV2 and VARX models:

LV-1

x̃1(t+1) = α1

[

1 − α1x1(t)
N1

]

−β12x2(t)+ρ1v1(t+1)−̟1p1(t+1)+ ε1(t+1)

x̃2(t + 1) = α2

[

1 − α2x2(t)
N2

]

− β21x1(t) − ̟2p2(t + 1) + ε2(t + 1)

LV-2

x̃1(t+1) = α1

[

1 − α1x1(t)
N1

]

−β12x2(t)+ρ1v1(t+1)−ρ11v
2
1(t+1)−̟1p1(t+

1) + ̟11p
2
1(t + 1) + ε1(t + 1)

x̃2(t+1) = α2

[

1 − α2x2(t)
N2

]

−β21x1(t)−̟2p2(t+1)+̟2p
2
2(t+1)+ε2(t+1)
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Figure 1: Our sales and competitor’s during the time period considered

VARX

x̃1(t + 1) = α01 + α1x̃1(t)− β12x̃2(t) + ρ1v1(t + 1)−̟1p1(t + 1) + ε1(t + 1)
x̃2(t + 1) = α02 + α2x̃2(t) − β21x̃1(t) − ̟1p2(t + 1) + ε2(t + 1)

where, in line with our methodology to estimate parameters (least squares
estimation, LSE), we will impose, as an hypothesis for the stochastic terms, that
[

ε1(t + 1)
ε2(t + 1)

]

is a white noise vector with the following distribution:

N

[[

0
0

]

,

[

var(ε1(t + 1)) cov(ε1(t + 1), ε2(t + 1))
cov(ε1(t + 1), ε2(t + 1)) var(ε2(t + 1))

]]

. The rea-

son of doing so is to ensure that the model is able to catch the most important
movements of variables x̃1 and x̃2. If not, it will appear an autocorrelation struc-

ture [7] in the residual term

[

ˆε1(t + 1)
ˆε2(t + 1)

]

, it is said, residual non independent

and identically distributed as stated above.
Figure 1, shows the relationship between our sales and the competitor sales.

Both show a stationary distribution around a mean value. They also have an
important seasonal component, with great picks in December. In the estimation
procedure, we will have to isolate seasonality, in order to obtain white noise
residuals and efficient estimation of parameters.

It is also possible to see some relationship between our sales and the GRPs
investment. The next Figure 2 shows a kind of non linear effect between GRP
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Figure 2: our sales and advertising effort in GRPs

and sales, as predicted by the LV theory. We can see that when we invest on
advertising, we obtain additional sales. However, there is not a clear direct
relationship (in which lower levels of advertising report lower levels of sales), so
this situation could be an evidence of a non linear relationship.

Before estimating any model, we analyze in detail the data set. First, we
relate our sales in time t and the competitor sales in time t-1. We make this com-
parison because discrete state equations in LV model are Markovians equations,
it is said, as we can see in models LV1 and LV2, the future state depends only of
the current state. Here we will show two different kind of relationship. Figure 3
(left) represents the level of both variables. This relationship is positive, and it
represents a counterintuitive correlation. We should expect a negative relation-
ship between our sales and competitor sales, as our theoretical models set. But
since our hipothetized market model LV is non-linear, our sales (in percentage
change) will be affected by the level of competitor sales in the previous moment.
In this case, the relationship showed by Figure 3 (right) shows some evidences
in favor of our theoretical model

Regarding the price effects, we can see in Figure 4 a negative effect between
our percentual changes in sales and the current price, perhaps with a little
evidence of a non linear behavior.

Similar results could be found in the relationship between percentage in-
crease in competitor sales in time t versus our sales in time t-1, and perhaps a
non linear relationship with their price (figure 5).

Least squares estimation of parameters [7] will be obtained next. We will
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Figure 3: our sales (in level and in % change)versus competitor’s sales

Figure 4: our sales (in % change) versus our price
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Figure 5: competitor sales (in % change) versus competitor price

estimate parameters and make some validation test to discuss about how likely
this estimated model is in line with the theoretical approach. Concretely, this
validation process will be9 :

• Structural test. To answer the question: Are the model parameters con-
stant over time? We will use Qusum test . [7]

• Autocorrelation test: It will be used to see in what level the estimated
model provides i.i.d10. residuals. [7],[5]

• And we will discuss about how the data fit the theory.

In the Table (2) we provide all the coefficient estimations with their associated
standard deviation and some fit statistics such as R squared, Akaike information
Criteria and Schwartz Criteria. We also provide Durbin-Watson autocorrelation
test.

We observe that LV2 model appears to fit better the data . Equation 1 of LV2
allows quadratic effects in price but not in advertising (it was not statistically
significative). Furthermore, equation 2 in LV2 also incorporates a quadratic
effect in price. Moreover, parameters do not change significantly across equa-
tions, excepting intercept parameter in LV-2 (due to the inclusion of a quadratic
value for the price). We would like to point out that we have estimated this
model filtering the seasonality of the data. That means that we have included

9In Appendix A we present this statistic test.
10Identical and independent distributed
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Table 2: Estimated coefficientes for LV-1,LV-2 and VARX models
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Figure 6: Impulse response graphics of estimated VARX. (left -down:response
of our sales to a competitor possitive shock. Rigth-up:response of competitor´s
sales to a possitive shock of us).

51 dummy variables to catch the seasonal cycle that the rest of the explicative
variables could not explain. Doing so, we increase the precision of the models
and we ensure no autocorrelation in residuals, as we will see in the following.

In addition, we will depict in Figure (6) an impulse-responde graph obtained
by VAR modeling. This graphs are habitual in Econometrics Empirical research
[5] because they help us to understand estimated parameters. Don´t forget
that in LV1 and LV2 as in VARX model the explained variables also appear
as explicative variables in the opposite equations. So, impulse responses help
us to understand how one impact in the disturbance term of one variable can
affect the endogenous variables (i.e., one change in one variable also affects, due
to the dynamic system, the other variables). We can interpret this result as if
the impact is slight the LV models can be approximated by a linear model (as
a VARX):

As we can see in Figure (6) -left, the impulse response is the effect of our sales
to a positive shock in competitor sales. The effect is negative but confidence
bounds seems to about not a negligible effect. Figure (6)-rigth shows the impulse
response of competitor sales due to a positive shock in our sales. The effect is
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clearly positive. That reflects our previous descriptive work, where we found
that the negative effect is only found in a non linear relationship. So, this
could be an evidence that the linear model is not the most accurate to reflect a
duopolistic competition.

To conclude, we will present in Figure (7) and Figure (8) two fit graphs.
In all them, we show in red the real variable, and in the other colors, are
represented the fit ability of each model. For the sake of readability, we present
some interesting sub-sample zoom.

Regarding to the correlation among different fittings and the real observa-
tion, In equation 1, LV1 and LV2 have similar correlation coefficient among
reality and fit (near 80%) the worst model is VARX (with less than 70%). Is
the same case in equation 2, due to correlation coefficient among models and
reality is near 75% in LV but aroung a 70% in VARX model.

In the next chapters we will use LV2 model results11 due to its non-linear
price effect on state equations. This property will allow us to obtain a more rich
optimization model.

3.2 Estimating cost functions

As in [1],[10], the advertising market benefit function is of the form :

Π1(x1(t), u1(t)) = (p1 − m1)x1(t) − C(v1(t)) (17)

Since p1 is well-known and we have decided to restrict m=0, we focus on
C(v1(t)). As is refered in some references [1],[10],[14] in order to operate in
the model, theoretic approach uses to work with a quadratic function, such
as:C(v1(t)) = c1v1 + c2v

2
1 or C(v1(t) = c1v

2
1 .

The main problem with quadratic functional forms is the fact that the more
the GRPs I invest up to the inflexion point, the more the cheaper could become
(in this case, we could have the same cost for 800 GRPs than for 200). And our
data only shows the behavior of advertising cost till 400 GRPs. So, logarithmic
functional form could be more interesting, due to its functional form, repre-
senting a saturation point. Least squares estimation [1] provides this equation
:

C(tv1) = 26917log(v1 + 1) (18)

with R-squared of 95%12.
In Figure (10) we can see the fit ability of the model to catch the nonlinearity

between GRPs invested and its cost. Following previous estimation, our cost-
benefit function will be:

Π1 = p1x1(t) − 26917log(v1 + 1) (19)

11LV1 performs in a similar way than LV2, but we preffer the latter for the optimization
purposes.

12we use ln(x+1) due to the existence of zero values in the variable
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Figure 7: Graphs of model performance, model for our sales
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Figure 8: Graphs of model performance, model for competitor´s sales
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Figure 9: Relationship between cost(real investment of our company) and GRPs

Figure 10: Fitting of cost function
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In the case of competitor company, since it has not advertising costs, this
should be its benefit function:

Π2 = p2x2(t) (20)

In this section we have obtained parameter values for all the necessary func-
tions to apply our optimization algortithm. We remark that in the next chapters
we will rely on a state equation type Lotka-Volterra with quadratic effects on
price. The cost function in our company will relate GRPs with its real cost by
a logartihmic function representing a kind of saturation point as the empirical
evidence shows in this case.

4 Dynamic Programming algorithm

In this section, we provide a bibliographic revision about dynamic programming
to solve optimal control problems. We recall that our objective is to solve a
problem of the form:

max
v1,p1

J1 =

∫ ∞

0

e−r1t ((p1 − m) x1(t) − C(v1(t))) dt (21)

max
p2

J2 =

∫ ∞

0

e−r2t ((p2 − m)x2(t)) dt (22)

ẋ1 = g1 (x1, x2, v1, p1) , x1(0) = x1,0 (23)

ẋ2 = g12 (x1, x2, p2) x2(0) = x2,0 (24)

Using a compact notation, our objective is to evaluate:

max
ui(t)

Ji =

∞
∫

0

f(s, x(s), u(s);α)ds (25)

st:

ẋ(s) = g(s, x(s), u(s);α), x(0) = x0 (26)

where u (·) : R → R
m is the control function (in our case is componed

by the variables (v1, p1, p2), concretely u1 = u(v1, p1) and u2 = u(p2), x (·) :
R → R

nis the state function (in our case, formed by x1, x2), α ∈R
A is the vector

of exogenous and constant parameters,x0 ∈R
n is the initial state. We can define

the optimal value function V (·)as the maximum value objective function that
can be obtained starting at any time t ∈ [0, T ] and in any admissible state x(t)
given the parameter vector α. More precisely, we have the following definition
of V (·):
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Vi(α, t, xt) = max
ui(t)

∞
∫

0

f(s, x(s), u(s);α)ds (27)

st:
ẋ(s) = g(s, x(s), u(s);α), x(0) = x0 (28)

Once we have defined the value function, we can solve the considered prob-
lem. As said in Chapter 2, we should obtain an analytical solution by solving
the associated Hamilton-Jacobi-Bellman equation (see Equation (16)). But it
is necessary to point out that we have to optimize two different HJB equations
(one per player). Since in this game we have to optimize taking into account
that our competitor also optimizes, we have to solve a system of two connected
HJB equations.

Since HJB equations are only solvable in few cases (e.g.,as in linear-quadratic
models [4] we will present some particular numerical methods to do it.

The method we propose has been developed using viscosity solutions in dy-
namic programming technics. In a few words, we will have to discretize the
problem in time and in space, and then iterate a value and a policy function
until convergence. This solution is stationary in time, and is adapted to infinite
time horizon games.

Next, we are going to explain all those concepts. Following [6],[12] we will
define h>0 as the discretization time step. The continuous time optimal control
problem is approximated by a first order discrete time scheme given by:

Vi,h(α, t, xt) = max
ui(t)

Ji,h(xi, ui, α) (29)

for i=1,2 and defining:

Ji,h(xi, ui, α) = h

∞
∑

t=0

βtfi(xi,h(t), ui,t;α) (30)

where β = 1 − rih and xi,h is defined by the discrete dynamics:

xi,h(t + 1) = ϕi,h(xi,h(t), ui,t) := xi,h(t) + hgi(xi,h(t), ui,t) (31)

The optimal value function Vi,h is the unique solution of the discrete Hamil-
ton-Jacobi-Bellman equation:

Vi,h(α, t, xt) = max
ui(t)

{hfi(xi,h(t), ui,t;α) + βVi,h(ϕi,h(xi,h(t), ui,t))} (32)

If we define the dynamic programming operator Th by:

Th(Vi,h)(α, t, xt) = max
ui(t)

{hfi(xi,h(t), ui,t;α) + βVi,h(ϕi,h(xi,h(t), ui,t))} (33)
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Then, Vi,h can be characterized as the unique solution of the fixed point
equation:

(Vi,h)(α, t, xt) = Th(Vi,h)(α, t, xt) (34)

The next step in the algorithm is to approximate the solution on a grid
denoted by Γ covering a compact subset Ω of the state space. So, denoting the
nodes of the grid Γ by xn,we are looking for an approximation V Γ

i,h satisfying:

(V Γ
i,h)(α, t, xt) = Th(V Γ

i,h)(α, t, xt) (35)

The value of V Γ
i,h for points which are not in the grid Gamma are deter-

mined by interpolation. This iteration used to reach a fixed point will be called
as “Value iterations”. In [16] the author proposes an algorithm (programmed
in MATLAB) that does the value iterations but also include a kind of policy
iterations. They point out that in 2D problems it could be more efficient and
quicker not to use a discretization of possible control variables to evaluate it in
each iteration. However they propose obtain optimal candidates by operating
explicitly in the problem due to functions are explicit and derivables. To do so,
they approximate the value function in the so-called “policy iterations” using
Taylor theorem as follows:

Vi,h(ϕi,h(xi,h(t), ui,t)) ∼= Vi,h(xi,h(t)) +
∂Vi,h

∂xi
gi(xi,h(t), ui,t), (36)

Substituting Equation (36) into Equation (32), we have:

(Vi,h)(α, t, xt) =
h

1 − β
max
ui(t)

{

f(xi,h(t), ui,t;α) + β
∂Vi,h

∂xi
gi(xi,h(t), ui,t)

}

(37)

So, in order to obtain from Equation (37) the optimal value for ui,one can
operate algebraically to obtain an explicit expression:

∂f(xi,h(t), ui,t;α)

∂ui,t
+ β

∂Vi,h

∂xi

∂gi(xi,h(t), ui,t)

∂ui,t
= 0 (38)

and, as [16] proposes, we can derivate V (·)by discretizing for steps k>1:

∂V k
i,h(xi,h(t))

∂xi,h

∼=
V k−1

i,h (xi,h(t) + △xi,h) − V k−1
i,h (xi,h(t))

△xi,h
(39)

we leave for next steps to research if using the exact gradient will cause
problems and if the maximum is located at the boundary of an element on
which we do the interpolation, since at these points the gradient will not be
defined .

The next three algorithms define our working proccess to obtaing optimal
policies. As it has been depicted in this chapter, we have a main algorith and two
different sub-rutines to obtain value iterations and policy iterations as follows:
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Algorithm 1 2D algorithm to solve differential games by dynamic programming

1. Choose △x1,△x2, tolerance,ri, rj ,h,x1min, x1max, x2min, x2max,calculante
m = x1max−x1min

△x1

, n = x2max−x2min

△x2

.Generate the 2D grid (Γ) using xm
1 , xn

2

2. Initialize the following variables (all are matrix with dimension m × n):

(a) value function player 1 and 2→V 01 = 0, V 02 = 0

(b) controls for player 1 and 2 (p=price, tv=advertising)→p01 = 0, p02 =
0, v1 = 0

(c) Gradients for player 1 and 2,
∂V k

i,h(xi,h(t))

∂xi,h

∼=

V k−1

i,h
(xi,h(t)+△xi,h)−V k−1

i,h
(xi,h(t))

△xi,h
, →grad01 = 0, grad02 = 0

(d) obtain the first values for state equations for players 1 and 2→ xi,h(t+
1) = xi,h(t) + hgi(xi,h(t), p01(t), p02(t), v1(t))

(e) interpolate Value function outside Γ for new state values xi,h(t + 1)

3. initialize error values (for value function and policy function):

(a) WHILE it<itmax or Error>tolerance

i. it=it+1

ii. VALUE ITERATION→ obtain Error value per player

iii. POLICY ITERATION→ obtain Error policy per player

(b) update error values per player (value function and policy function).
Error is the maximmum of then.

4. END when convergence is achieved (Error is less than tolerance, or we
have reached the maximmum of iterations)
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Algorithm 2 VALUE ITERATION

Note that here we take as given al the policy values (p01,p02,v1=0) and iterate
value function. In each iteration, the two value functions are connected as we
have explained before.

1. Initialize Value error per player. Initialize utility function per player→
fi(xi,h(t), ui,t;α), initialize Vi,h(ϕi,h(xi,h(t), ui,t) = 0

2. WHILE it<itmax or Error value>tolerance

(a) it=it+1

(b) calculate for i=1,2→ V 0iit = hfi(xi,h(t), ui,t;α) +
βV it

i,h(ϕi,h(xi,h(t), ui,t))

(c) actualize by interpolation V it+1
i,h (ϕi,h(xi,h(t), ui,t) using xi,h(t + 1)

(d) calculateV 0iit+1 = hfi(xi,h(t), ui,t;α) + βV it+1
i,h (ϕi,h(xi,h(t), ui,t))

(e) Error valueit+1
i = V 0iit+1 − V 0iit

(f) error is the max Error valueit+1
i

3. END when convergence is achieved

Next, we explain some of the properties of the algorithms and operations
presented in this chapter. Following [13], by using the contraction mapping
theorem in the algorithm (we have dropped the h and the i for the sake of
simplicity) V n+1 = TV n, V n will converge to the infinite value horizon value
function for any initial guess V 0. The sequence of control which rules un will also
converge to the optimal control rule. This demonstration is explained with detail
in [9]. But there are two practical problems when implementing a discretization,
as is suggested in [9]:

1. The limit can never be achieved. Numerical methods rely on finite itera-
tions

2. T is a functional, a mapping which takes a function and creates a new
function.

We have to approximate this last idea by using interpolation, as it has been
explained before. In the following, we will derivate the error bounds in a pro-
gramming dynamic algorithm and then we will examine the properties of linear
interpolation (the method is used in our algorithm, as suggested by [6],[16]).

Assuming the continuity and the derivability of the involved functions, is
shown in [9] and [12], that error bounds of T when we have V ∞ (it is said, value
solved in infinite time) : ‖V − V ∞‖ ≤ ‖TV − V ‖/(1 − β).

Linear interpolation satisfies particularly desirable properties for approxi-
mate dynamic programming. Assuming we know that V is monotonically in-
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Algorithm 3 POLICY ITERATION

Here we have to obtain a candidate to policies (p01*,p02*,v1*). We make this
operations in each stage taking into account that the two equations are connected
as we pointed out before:

1. Initialize Error policy per player.

2. WHILE it<itmax or Error policy>tolerance

(a) calculate gradient for i=1,2→
∂V k

i,h(xi,h(t))

∂xi,h

∼=

V k−1

i,h
(xi,h(t)+△xi,h)−V k−1

i,h
(xi,h(t))

△xi,h
→ grad01, grad02

(b) obtain optimal control candidates→
∂f(xi,h(t),ui,t;α)

∂ui,t
+

β
∂Vi,h

∂xi

∂gi(xi,h(t),ui,t)
∂ui,t

= 0→ ui,h∗ = p01∗, p02∗, v1∗

(c) actualize state equations→ xi,h(t + 1) = xi,h(t) + hgi(xi,h(t), p01 ∗
(t), p02 ∗ (t), v1 ∗ (t))

(d) actualize value function →V 0iit+1 = hfi(xi,h(t), u∗i,t;α) +
βV it+1

i,h (ϕi,h(xi,h(t), u∗i,t))

(e) Error policyit+1
i = V 0iit+1 − V 0iit

(f) error is the max Error policyit+1
i

3. END when convergence is achieved
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creasing, we consider the interval Ii ≡ [xi, xi+1)]. The monotonicity implies, for
x ∈ I:Vi ≤ TV (x) ≤ Vi+1, where we have relaxed notation to remark the use
of interpolation function T̂ . So, having an approximation error on Ii at most:
△i ≡ Vi+1 − Vi the linear interpolation method, implies:

‖TV − T̂ V ‖ ≤ max
i

△i (40)

Where this expression for error of interpolation is demonstrated in [9], this
ensures that linear interpolation satisfies particularly desirable properties for
approximate dynamic programming.

4.1 An application in 1D and 2D problems

We now apply the algorithms developed in this chapter to two base-line prob-
lems.

EXAMPLE 1

Firstly, we propose the Brock-Mirman growth deterministic model [6],[12].
This model is simple and has one analytic solution (being c=consum, k=capital):

V (k0) = max
k

∞
∑

t=0

βtlog(ct) (41)

st:

ct = Akα
t − kt+1 (42)

where k0is fixed, 0 < β < 1, A > 0, 0 < α < 1.

The analytic solution is of the form: V (k0) = B + Clog(k0) where , B =
log((1−αβ)A)+ αβ

1−αβ
log(Aαβ)

1−β and C = α
1−β . We will set, as in [6], A = 5, α =

0.34, β = 0.95. We define a grid of possible capitals (kt)in the interval [0.1,10].
We use our algorith adapted to 1D, taking as initial value function as zero, we
get this solution in Figure(11):

In this first example, we have chosen as tolerance value h2. Where h is
the kapital increase in the defined grid. If h=0.01, tolerance will have to be
tol = 0.0001. Following [12], this tolerance is fixed such as:

‖V h
n+1 − V h

n ‖ ≤ h2 (43)

Due to the fact that T is a contractive operator with modulues, the fixed
point should be bounded, taking Equation (43) , by:

‖V h
n+1 − V h

n ‖ ≤
h2

1 − β
(44)

So, in this EX1, ‖V h
n+1 − V h

n ‖ ≤ 0.0001
1−0.95 = 0.002. As we can see, taking L2,

our results are in line with we expected a priori. If we make a fine grid, we

28



Figure 11: Numerical solution of EX1 and error estimation. h=0.01

Figure 12: Error estimation when h=0.001
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can reduce the error. Following that idea, we will use a space discretization of
h = 0.001.

EXAMPLE 2

The second problem is a 2D growth model without analytic solution, but it
has been solved with the same results than in [6] and [16]. Since it is used as
a baseline model to prove that the method is reliable, we show that the results
of our algorithm (which is a variation of [16] for solving a dynamic game with
more than one control) are comparable with the ones published in [6] and [16].
Let:

g(x, u) = k1x
1/2
1 −

x1

1 + k2x4
1

− c1x2 −
c2x

2
2

2
−

au2

2
(45)

with:

d

dt

[

x1(t)
x2(t)

]

=

[

x2(t) − σx1(t)
u(t)

]

(46)

and, taking the same values than in [6] and [16], we obtain the same solutions
shown in Figure (13) As it is docummented in bibliografy, u(x1, x2), obtained
in Figure (13), shows a special characteristic of optimal control. It is the dis-
continuity in the politics (u) showing a line wich is called skiba − line.[6],[16].

In this chapter, we have show the main characteristics of our algorithm
to solve differential games by using dynamic programming. We have shown
two benchmark examples based on bibliography to illustrate the ability of our
method to solve this kind of problems.

5 The ’How much’ war. A numerical solution

In this final chapter, we will apply the previous algorithms introduced in Section
3 to obtain optimal solutions to our primary problem. We will deliver the follow-
ing results: Value function, optimal price and optimal advertising investments
for our company and the competitor in a closed-loop form (which depending of
our sales value and the competitor sales in the state space). We compare the ob-
tained results with real policies considered by a particular company (anonymous
due to legal issues) to check which method provide the best results.

We remember that the considered problem is:
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Figure 13: solution to EX-2 by our algorithm
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obtain a closed-loop approximation to the following differential game:

max
tv1,p1

J1 =

∫ ∞

0

e−r1t (p1x1(t) − c1log(v1(t))) dt (47)

max
p2

J2 =

∫ ∞

0

e−r2t (p2x2(t)) dt (48)

with dynamics:

ẋ1 =
[

α1

[

1 − α1x1

N1

]

− β12x2 + ρ1v1 − ̟1p1 + ̟11p
2
1

]

x1

ẋ2 =
[

α2

[

1 − α2x2

N2

]

− β21x1 − ̟2p2 + ̟22p
2
2

]

x2

and with parameter values:
r1 r2 c1 α1

α1

N1
β12

player 1 0.05 26917 5.41 0.022 0.034

player 2 0.05

ρ1 ω1 ω11 α2

α2

N2
β21 ω2 ω22

player 1 0.00035 0.80 0.032

player 2 3.73 0.046 0.040 0.534 0.029

In Section 3, we showed that the two versions of the LV state equations
could be considered as similar to fit the real data. As we can see, the only
difference between models, is the quadratic price variable in the two equations
of LV2. This is a slight difference, but it allows us to obtain in our algorithm an
explicit expression for the price variable in the Step 2-d of the policy iteration
(see algorithm 3).

Using LV1 as the state equation, to obtain optimal price, we realize that
the price variable does not appear after derivation. This happens when the
control variables are linear in benefit and in state equations [13]. The optimal
control obtained is called “bang –bang”. The result of a bang-bang control is
the maximum or the minimum value for the control, depending if the value of
variables are greater than zero or not. We have decided to not derive bang-bang
controls following the LV1 model.

Solving the closed-loop equilibria for two players, we obtain the results shown
in Figure(13), considering a tolerance of 0.01. As it is shown in this Figure, the
results are intuitive:

1. The value Function increases as our sales increase. But it has an intense
growth when our competitor is in low sales levels and viceversa.

2. The price function has a dominant value (around 12.5 %). But is in-
teresting to comment that this price function has a growing part as our
sales increase from 0 to 15 (approx.). This could be represent a leader
mechanism, in which up to some sales level (in this case, around 15), the
company is a leader and can up the price, taking profit of this advantage.
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3. The advertising function has a decreasing value as our sales increase. It
is plausible due to, the more we are known, the less we need to advertise.
Note that if our competitor has more sales than us, the advertising value
is bigger than in other cases.

4. Similar conclusions can be taken from competitor’s results.

Once we have results, it is possible to compare the performance of the model
versus reality. In figure (16), we compare real GRPs invested by a particular
compnay and the one recommended by the model. As it is shown in the chart,
our model does not use to recommend more than 150 GRPs per week. Due
to the costs structure and the dynamics, it could be possible to interpret the
real GRPs as oversized. On the other hand, pricing policy recommended by
our model is more aggresive. It recommends a constant price around 12,5 % In
reality, price has moved from 13% to 12%.

Regarding the Economic performance of the model versus reality, we have
calculated a benefit using Equation(17). The most important losses are incurred
in the time periods with TV advertising. As is depicted in Figure (17), up to
2009 there is a slight gain, every week, by using our model due to pricing
advantage. In fact,we have obtained an improvement in the benefit with our
model of a 7.7% in comparison with the real strategy.

In this section, we have shown the main advantages of using a differential
game to make decissions. It is important to note that this model, once it is
estimated, is able to obtain all the strategy for the fixed time period by the
company. And, following competitor evolution, it is possible to actualize the
model to adapt its response to the shocks that could affect both companies.

6 Conclusions and Further work

In this work, we have developed a numerical method to solve infinite time differ-
ential games in closed-loop equilibria. Differential games are thought to be run
in dynamic decisions and competitive situations, such as marketing investments
and pricing policies in a company. Closed-loop equilibria allow us to obtain
strategies as a function of ourselves and our competitor. We have applied our
algorithm to a real data set of two spanish competitive firms. We show that
with our algorithm it is possible to develop different price-advertising strategy
to get around more than 7,7% of benefits.

We remark that the main contribution of this work has been the numerical
method, adapting the algorithm from dynamic programming, and the parameter
estimation in real-life cases, using Lotka-Volterra family of differential equations
adapted to our context. We propose for next steps this research lines:
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Figure 14: Our approximate solution

34



Figure 15: Competitor approximate solution.
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Figure 16: Recommended policies versus reality.
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Figure 17: A study of the benefit

1. Adapting the algorithm for stochastic games. Since we deal with esti-
mated parameters and models, we have a measure of error that could be
incorporated in the method.

2. Research of new ways to obtain maximal points in a more efficient way
taking into account that usually there are more than one control in our
functions.

3. Using more different methodologies to estimate parameters, and compare
which is more adaptable to data for this purposes. As can be seen in the
Apendix, it could be necessary to include more lags in the variables, so
state equations should be re-formulated in a multi-step approach.

4. Trying different functional forms such as competing in price differential or
a typical Stackelberg game (in which one of the company is a leader and
the rest is a follower).
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Appendix. Estimated Models

In this Appendix we include the most important test of specification in Econo-
metric Models of Section 3.
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Figure 18: Specificacion test VARX

Equation 1: Ljung-Box Q’ = 65.9137 with p-value = P(Chi-square(60) >
65.9137) = 0.28
Equation 2: Ljung-Box Q’ = 117.868 with p-value = P(Chi-square(60) >
117.868) = 1.21e-005

Residual correlation matrix, C (2 x 2)
1.0000 0.16625 0.16625 1.0000
Eigenvalues of C
0.83375 1.16625
Doornik-Hansen test Chi-square(4) = 21.1133 [0.0003]

Null hypothesis: the regression parameters are zero for the variables
GRPs, preciox, precioy
Test statistic: Chi-square(6) = 35.5627, with p-value = 3.35204e-006
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Figure 19: Specification Test LV-1 Eq1
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Figure 20: Specification test LV-2 eq2
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Figure 21: Specification test LV-2 eq1
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Figure 22: Specification test LV-2 Eq2
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